Influence of pixel etching on electrical and electro-optical performances of a ga-free inas/inassb t2sl barrier photodetector for mid-wave infrared imaging Article uri icon

abstract

  • In this paper, the influence of etching depth on the dark current and photo-response of a mid-wave infrared Ga-free T2SL XBn pixel detector is investigated. Two wet chemical etching depths have been considered for the fabrication of a non-passivated individual pixel detector having a cut-off wavelength of 5 µm at 150 K. This study shows the strong influence of the lateral diffusion length of a shallow-etched pixel on the electro-optical properties of the device. The lowest dark current density was recorded for the deep-etched detector, on the order of 1 × 10−5 A/cm2 at 150 K and a bias operation equal to −400 mV. The corresponding quantum efficiency was measured at 60%25 (without anti-reflection coating) for a 3 µm thick absorbing layer. A comparison of experimental results obtained on the two kinds of etched pixels demonstrates the need for a deep-etching process combined with efficient passivation for FPA manufacturing. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.

publication date

  • 2021-01-01