Soliton formation from a noise-like pulse during extreme events in a fibre ring laser Article uri icon

abstract

  • We study experimentally the interactions between soliton and noise-like pulse (NLP) components in a mode-locked fibre ring laser operating in a hybrid soliton-NLP regime. For proper polarization adjustments, one NLP and multiple packets of solitons coexist in the cavity, at 1530 nm and 1558 nm, respectively. By examining time-domain sequences measured using a 16 GHz real-time oscilloscope, we unveil the process of soliton genesis: they are produced during extreme-intensity episodes affecting the NLP. These extreme events can emerge sporadically, appear in small groups or even form quasi-periodic sequences. Once formed, the wavelength-shifted soliton packet drifts away from the NLP in the dispersive cavity, and eventually vanishes after a variable lifetime. Evidence of the inverse process, through which NLP formation is occasionally seeded by an extreme-intensity event affecting a bunch of solitons, is also provided. The quasi-stationary dynamics described here constitutes an impressive illustration of the connections and interactions between NLPs, extreme events and solitons in passively mode-locked fibre lasers. © 2017 Astro Ltd.

publication date

  • 2017-01-01