Ultra-slow and arrested density-fluctuations as precursor of spatial heterogeneity Article uri icon


  • Dynamical heterogeneities in glass-forming liquids subjected to cooling processes are studied by a theoretical framework based on the non-equilibrium self-consistent generalized Langevin equation theory. This theory predicts that slow cooling rates permit the relaxation to the equilibrium state distinguished by a homogeneous local density. In contrast, fast cooling rates provoke dynamically arrested density-fluctuations and the establishment of permanent spatial heterogeneities even in the presence of density gradients. We further show that the dynamics toward the arrested state has two steps: a truncated relaxation followed by a second relaxation of the diluted part of the system. © 2022 Author(s).

publication date

  • 2022-01-01