Structural study, photoluminescence, and photocatalytic activity of semiconducting BaZrO3:Bi nanocrystals Conference Paper uri icon

abstract

  • Wide band gap nanocrystalline bismuth doped barium zirconate is synthesized by a facile hydrothermal method at 100 °C. The obtained cubic perovskites are characterized by powder X-ray diffraction (XRD), UV-VIS diffuse reflectance spectroscopy, photoluminescence (PL) spectroscopy, and photocatalytic activity. The estimated band gap in the 2.4-4.9 eV range, depending on Bi concentration, suggests nanocrystalline BaZrO3:Bi as a useful visible-light activated photocatalyst under excitation wavelengths <800 nm. Displacement of main XRD pattern peaks suggest that bismuth ion mostly substitutes into Zr 4 sites within the BaZrO3 host lattice. It is found that BaZrO3:Bi decomposes methylene blue (MB) under both UV and visible light irradiation. The photocatalyst efficiency depends strongly on Bi content and induced defects. © 2011 Elsevier B.V.
  • Wide band gap nanocrystalline bismuth doped barium zirconate is synthesized by a facile hydrothermal method at 100 °C. The obtained cubic perovskites are characterized by powder X-ray diffraction (XRD), UV-VIS diffuse reflectance spectroscopy, photoluminescence (PL) spectroscopy, and photocatalytic activity. The estimated band gap in the 2.4-4.9 eV range, depending on Bi concentration, suggests nanocrystalline BaZrO3:Bi as a useful visible-light activated photocatalyst under excitation wavelengths <800 nm. Displacement of main XRD pattern peaks suggest that bismuth ion mostly substitutes into Zr 4%2b sites within the BaZrO3 host lattice. It is found that BaZrO3:Bi decomposes methylene blue (MB) under both UV and visible light irradiation. The photocatalyst efficiency depends strongly on Bi content and induced defects. © 2011 Elsevier B.V.

publication date

  • 2011-01-01