Conducting polymers as a link between biomolecules and microelectronics
Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Biosensors based on electronic conducting polymers (ECPs) appear particularly well suited to the requirements of modern biological analysis: multiparametric assays, high information density and miniaturization. We describe a new methodology for the preparation of addressed DNA matrices. The process includes an electrochemically directed copolymerization of pyrrole and oligonucleotides bearing on their 5' end a pyrrole moiety. The resulting polymer film deposited on the addressed electrode consists of pyrrole chains bearing covalently linked oligonucleotides. An oligonucleotide array was constructed on a silicon device bearing a matrix of 48 addressable 50 μm × 50 μm gold microelectrodes. This technology was successfully applied to the genotyping of Hepatitis C Virus in blood samples. Fluorescence detection results show good sensivity and a high degree of dimensional resolution. The need for versatile processes for the immobilization of biological species on surface led us to extend our methodology. A biotinylated surface was obtained by co-electropolymerization of pyrrole and biotin-pyrrole monomers. The efficiency for recognition (and consequently immobilization) of R-phycoerythrin-avidin was demonstrated by fluorescence detection. Copolymerization of decreasing ratios of pyrrole-biotin over pyrrole allowed us to obtain a decreasing scale of fluorescence.