Precipitation hardening analysis of an Al-8%25Ag alloy
Conference Paper
-
- Overview
-
- Research
-
- Identity
-
- Additional Document Info
-
- View All
-
Overview
abstract
-
Aluminum alloys are important in aerospace industry, due to their mechanical properties, low specific weight and good corrosion resistance. Such properties are achieved due to a heat treatment of solubilization, quenching and aging, in order to precipitate metastables phases, which act as dislocation obstacles, increasing the strength of the alloy. In the present study, the precipitation sequence of Al-8%25Ag alloy was analyzed via Vickers hardness and Transmission Electron Microscopy. The size and morphology of the precipitated particles, involved in the stages of precipitation process was characterized. It was determined the microstructure at the peak hardness, which is mainly composed of spherical GP zones with about 6 nm average diameter, which are responsible for the alloy achieve a value of 72 HVN. It was observed that this hardness value does not compete with others well known alloys, like AA 6061 and AA 2024, which can be precipitation hardened. The main reason for the low values of HVN, is because of there is no enough difference between the matrix and the precipitated particles lattice parameters, and don%27t cause a significant elastic strain by coherence in the matrix lattice, that could produce a substantial hardening. To ascertain this assumption, the aged material was severely plastic deformed, achieving 94 HVN, and the grain refinement and high dislocations density were the major hardening mechanisms, since the precipitates behavior was similar as the matrix, because particles were distorted instead of acting as impediment to material flow. © (2014) Trans Tech Publications, Switzerland.
-
Aluminum alloys are important in aerospace industry, due to their mechanical properties, low specific weight and good corrosion resistance. Such properties are achieved due to a heat treatment of solubilization, quenching and aging, in order to precipitate metastables phases, which act as dislocation obstacles, increasing the strength of the alloy. In the present study, the precipitation sequence of Al-8%25Ag alloy was analyzed via Vickers hardness and Transmission Electron Microscopy. The size and morphology of the precipitated particles, involved in the stages of precipitation process was characterized. It was determined the microstructure at the peak hardness, which is mainly composed of spherical GP zones with about 6 nm average diameter, which are responsible for the alloy achieve a value of 72 HVN. It was observed that this hardness value does not compete with others well known alloys, like AA 6061 and AA 2024, which can be precipitation hardened. The main reason for the low values of HVN, is because of there is no enough difference between the matrix and the precipitated particles lattice parameters, and don't cause a significant elastic strain by coherence in the matrix lattice, that could produce a substantial hardening. To ascertain this assumption, the aged material was severely plastic deformed, achieving 94 HVN, and the grain refinement and high dislocations density were the major hardening mechanisms, since the precipitates behavior was similar as the matrix, because particles were distorted instead of acting as impediment to material flow. © (2014) Trans Tech Publications, Switzerland.
publication date
published in
Research
keywords
-
Age hardening; Aluminum alloys; Plastic deformation Aerospace industry; Age hardening; Aluminum; Aluminum alloys; Corrosion resistance; Grain refinement; Mechanical properties; Plastic deformation; Precipitates; Silver; Silver alloys; Transmission electron microscopy; Average diameter; Dislocation obstacles; Dislocations densities; Hardening mechanism; Hardness values; Matrix lattice; Precipitation process; Precipitation sequence; Precipitation (chemical)
Identity
Digital Object Identifier (DOI)
Additional Document Info
start page
end page
volume