Synthesis of Bamboo-like Multiwall Carbon Nanotube-Poly(Acrylic Acid-co-Itaconic Acid)/NaOH Composite Hydrogel and its Potential Application for Electrochemical Detection of Cadmium(II) Article uri icon

abstract

  • A poly(acrylic acid-co-itaconic acid) (PAA-co-IA)/NaOH hydrogel containing bamboo-type multiwall carbon nanotubes (B-MWCNTs) doped with nitrogen (PAA-co-IA/NaOH/B-MWCNTs) was synthesized and characterized by SEM, absorption of water, point of zero charges, infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. The possible use of the PAA-co-IA/NaOH/B-MWCNT hydrogel as an electrode modifier and pre-concentrator agent for Cd(II) sensing purposes was then evaluated using carbon paste electrodes via differential pulse voltammetry. The presence of the B-MWCNTs in the hydrogel matrix decreased its degree of swelling, stabilized the structure of the swollen gel, and favored the detection of 3 ppb Cd(II), which is comparable to the World Health Organization%27s allowable maximum value in drinking water. A calibration curve was obtained in the concentration range of 2.67 × 10-8 to 6.23 × 10-7 M (i.e., 3 and 70 ppb) to determine a limit of detection (LOD) of 19.24 μgL-1 and a sensitivity of 0.15 μC ppb-1. Also, the Zn(II), Hg(II), Pb(II) and Cu(II) ions interfered moderately on the determination of Cd(II).
  • A poly(acrylic acid-co-itaconic acid) (PAA-co-IA)/NaOH hydrogel containing bamboo-type multiwall carbon nanotubes (B-MWCNTs) doped with nitrogen (PAA-co-IA/NaOH/B-MWCNTs) was synthesized and characterized by SEM, absorption of water, point of zero charges, infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry. The possible use of the PAA-co-IA/NaOH/B-MWCNT hydrogel as an electrode modifier and pre-concentrator agent for Cd(II) sensing purposes was then evaluated using carbon paste electrodes via differential pulse voltammetry. The presence of the B-MWCNTs in the hydrogel matrix decreased its degree of swelling, stabilized the structure of the swollen gel, and favored the detection of 3 ppb Cd(II), which is comparable to the World Health Organization's allowable maximum value in drinking water. A calibration curve was obtained in the concentration range of 2.67 × 10-8 to 6.23 × 10-7 M (i.e., 3 and 70 ppb) to determine a limit of detection (LOD) of 19.24 μgL-1 and a sensitivity of 0.15 μC ppb-1. Also, the Zn(II), Hg(II), Pb(II) and Cu(II) ions interfered moderately on the determination of Cd(II).

publication date

  • 2020-01-01