Tuning the pH-responsiveness capability of poly(acrylic acid-co-itaconic acid)/NaOH hydrogel: Design, swelling, and rust removal evaluation
Article
-
- Overview
-
- Research
-
- Identity
-
- Additional Document Info
-
- View All
-
Overview
abstract
-
The swelling behavior of poly(acrylic acid-co-itaconic acid)/NaOH hydrogel as well as its ability for iron and copper rust removal was studied and established for the first time. Through an experimental design, the influence of the synthesis parameters on hydrogel response was determined. It was found that pH-responsiveness dependence of hydrogel determines its application. In alkaline media, the hydrogel acted as superabsorbent, while in acidic, the most outstanding property was its pickling capability that allowed to clean carbon steel and copper metallic surfaces. Infrared, thermogravimetry, and scanning electron microscopy were performed to determine copolymer formation, thermal properties, and morphology. Metallic crystallographic phases formed during the corrosion processes were determined by X-ray diffractometer. Hydrogel adhesiveness followed by diffusion and dissolution of metal oxides species was identified as the main steps in the rust removal mechanism. This method offers a new, environmentally friendly perspective to eliminate corrosion from metallic surfaces compared with traditional strategies. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020, 137, 48403. © 2019 Wiley Periodicals, Inc.
publication date
funding provided via
published in
Research
keywords
-
copolymer; experimental design; hydrogel; rust removal; swelling Adhesives; Alkalinity; Carboxylic acids; Copolymers; Copper; Corrosion; Design of experiments; Scanning electron microscopy; Statistics; Surface measurement; Swelling; Thermogravimetric analysis; Corrosion process; Crystallographic phasis; Metallic surface; Ph responsiveness; Removal mechanism; Swelling behavior; Synthesis parameters; X ray diffractometers; Hydrogels
Identity
Digital Object Identifier (DOI)
Additional Document Info
start page
end page
volume
issue