Synthesis and Characterization of a New Collagen-Alginate Aerogel for Tissue Engineering Article uri icon

abstract

  • Scaffolds have been used as extracellular matrix analogs to promote cell migration, cell attachment, and cell proliferation. The use of aerogels and carbon-based nanomaterials has recently been proposed for tissue engineering due to their properties. The aim of this study is to develop a highly porous collagen-alginate(-graphene oxide) aerogel-based scaffold. The GO synthesis was performed by Hummers method; a collagen-alginate and collagen-alginate-GO hydrogel were synthetized; then, they were treated by a supercritical drying process. The aerogels obtained were evaluated by SEM and FTIR. Osteoblasts were seeded over the scaffolds and evaluated by SEM. According to the characterization, the aerogels showed a highly porous interconnected network covered by a nonporous external wall. According to the FTIR, the chemical functional groups of collagen and GO were maintained after the supercritical process. The SEM images after cell culture showed that a collagen-alginate scaffold promotes cell attachment and proliferation. The alginate-collagen aerogel-based scaffold could be a platform for tissue engineering since it shows adequate properties. Further studies are needed to determine the cell interactions with GO. © 2019 Abraham Muñoz-Ruíz et al.

publication date

  • 2019-01-01