The Decmon: A new nanoparticle shape along the truncation path from the icosahedron to the decahedron Article uri icon

abstract

  • The idea that shape and structure determines functionality is one of the leiv-motifs that drives research and applications on fields such as catalysis and plasmonics. The growth and stability of metallic clusters is extensively discussed through faceting and energy minimization mechanisms, respectively. Facet truncations on the regular Mackay-icosahedron (m-Ih) give rise to two sub-families exhibiting five-fold symmetry and external decahedral shape. Such successive truncations made to the regular m-Ih, led to a decahedral motif called %27Decmon%27 (Montejano%27s decahedron). This structure expose facets (111) and (100), that after a total energy minimization through molecular dynamics simulations using the embedded atom model, proved to be thermally stable. This result has been confirmed by using nano-thermodynamics. The surface energy competition between the (111) and (100) facets explains its stability at some given cluster sizes, and this truncation path permits to glimpse the potential energy surface in the growth path of nanoparticles from the decahedral (s-Dh) to icosahedral (m-Ih) structures. © 2019 IOP Publishing Ltd.
  • The idea that shape and structure determines functionality is one of the leiv-motifs that drives research and applications on fields such as catalysis and plasmonics. The growth and stability of metallic clusters is extensively discussed through faceting and energy minimization mechanisms, respectively. Facet truncations on the regular Mackay-icosahedron (m-Ih) give rise to two sub-families exhibiting five-fold symmetry and external decahedral shape. Such successive truncations made to the regular m-Ih, led to a decahedral motif called 'Decmon' (Montejano's decahedron). This structure expose facets (111) and (100), that after a total energy minimization through molecular dynamics simulations using the embedded atom model, proved to be thermally stable. This result has been confirmed by using nano-thermodynamics. The surface energy competition between the (111) and (100) facets explains its stability at some given cluster sizes, and this truncation path permits to glimpse the potential energy surface in the growth path of nanoparticles from the decahedral (s-Dh) to icosahedral (m-Ih) structures. © 2019 IOP Publishing Ltd.

publication date

  • 2019-01-01