Chemical Constituents of Salix babylonica L. And their antibacterial activity against Gram-positive and Gram-negative animal bacteria Article uri icon

abstract

  • The principle of animal wellbeing, which states that animals should be free from pain, injury, and disease, is difficult to maintain, because microorganisms are most frequently found to be resistant or multi-resistant to drugs. The secondary metabolites of plants are an alternative for the treatment of these microorganisms. The aim of this work was to determine the antibacterial effect of Salix babylonica L. hydroalcoholic extract (SBHE) against Escherichia coli, Staphylococcus aureus and Listeria monocytogenes, and identify the compounds associated with the activity. The SBHE showed activity against the three strains, and was subjected to a bipartition, obtaining aqueous fraction (ASB) with moderate activity and organic fraction (ACSB) with good activity against the three strains. The chromatographic separation of ACSB, allowed us to obtain ten fractions (F1AC to F10AC), and only three showed activity (F7AC, F8AC and F10AC). In F7AC, five compounds were identified preliminary by GC-MS, in F8AC and F10AC were identified luteolin (1) and luteolin 7-O-glucoside (2) by HPLC, respectively. The best antibacterial activity was obtained with F7AC (Listeria monocytogenes; MIC: 0.78 mg/mL, MBC: 0.78 mg/mL) and F8AC (Staphylococcus aureus; MIC: 0.39 mg/mL; MBC: 0.78 mg/mL). The results indicated that the compounds obtained from SBHE can be used as an alternative treatment against these microorganisms and, by this mechanism, contribute to animal and human health. © 2019 by the authors.

publication date

  • 2019-01-01