Flatness-based control for the maximum power point tracking in a photovoltaic system
Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Solar energy harvesting using Photovoltaic (PV) systems is one of the most popular sources of renewable energy, however the main drawback of PV systems is their low conversion efficiency. An optimal system operation requires an efficient tracking of the Maximum Power Point (MPP), which represents the maximum energy that can be extracted from the PV panel. This paper presents a novel control approach for the Maximum Power Point Tracking (MPPT) based on the differential flatness property of the Boost converter, which is one of the most used converters in PV systems. The underlying idea of the proposed control approach is to use the classical flatness-based trajectory tracking control where a reference voltage will be defined in terms of the maximum power provided by the PV panel. The effectiveness of the proposed controller is assessed through numerical simulations and experimental tests. The results show that the controller based on differential flatness is capable of converging in less than 0.15 s and, compared with other MPPT techniques, such as Incremental Conductance and Perturb and Observe, it improves the response against sudden changes in load or weather conditions, reducing the ringing in the output of the system. Based on the results, it can be inferred that the new flatness-based controller represents an alternative to improve the MPPT in PV systems, especially when they are subject to sudden load or weather changes. © 2019 by the authors.
publication date
funding provided via
published in
Research
keywords
Differential flatness; MPPT; Nonlinear control Controllers; DC-DC converters; Energy efficiency; Energy harvesting; Photovoltaic cells; Solar energy; Solar power generation; Differential flatness; Flatness based trajectory tracking control; Flatness-based control; Incremental conductance; Maximum power point; Maximum Power Point Tracking; Non linear control; Photovoltaic systems; Maximum power point trackers
Identity
Digital Object Identifier (DOI)
Additional Document Info
start page
end page
volume
issue