Evaluation of ToxA and Vibrio parahaemolyticus lysate on humoral immune response and immune-related genes in Pacific red snapper Article uri icon

abstract

  • Immunogenicity of ToxA and Vibrio parahaemolyticus lysate was evaluated in a double immunostimulation scheme in Pacific red snapper after V. parahaemolyticus infection. Three groups of Pacific red snapper were intraperitonealy (i.p.) injected with phosphate-buffered saline (PBS group), ToxA of V. parahaemolyticus (ToxA-Vp group) or V. parahaemolyticus lysate (lysate-Vp group) (first injection, day 1; second injection, day 7). Fish were subsequently infected with live V. parahaemolyticus. Humoral immune parameters in skin mucus and serum were evaluated on days 1, 7, 8 and 14 days post-immunostimulation and 7 days post-infection. Moreover expression of immune-related genes was quantified by real time PCR in head-kidney leukocytes, spleen, liver, and intestine. The ToxA-Vp-treated group showed a higher anti-protease and catalase activity in skin mucus when compared with the PBS group. Measurements of SOD and CAT activities showed an increment in both activities a day after the second boost with ToxA-Vp or lysate-Vp. Interestingly, IgM levels in mucus and transcripts were enhanced followed the ToxA-Vp treatment even after challenge. Furthermore, IL-1β was strongly expressed in all analyzed cell or tissues followed ToxA-Vp or Vp-lysate treatments. Finally, SOD and CAT gene expression was up-regulated in fish immunostimulated with either treatment ToxA-Vp or lysate-Vp, mainly after infection in head-kidney leukocytes and intestine. This is the first study where the effects of ToxA from V. parahaemolyticus in the immune system of Pacific red snapper was evaluated. These results suggest that ToxA-Vp would positively affect humoral immune response and up-regulate expression of genes involved in the immune system function; and could help in the control of V. parahaemolyticus infection in Pacific red snapper Lutjanus peru, an economic important fish in Mexico. © 2016 Elsevier Ltd

publication date

  • 2016-01-01