Localization and dynamical arrest of colloidal fluids in a disordered matrix of polydisperse obstacles Article uri icon

abstract

  • The mobility of a colloidal particle in a crowded and confined environment may be severely reduced by its interactions with other mobile colloidal particles and the fixed obstacles through which it diffuses. The latter may be modelled as an array of obstacles with random fixed positions. In this contribution, we report on the effects of the size-polydispersity of such fixed obstacles on the immobilization and dynamical arrest of the diffusing colloidal particles. This complex system is modelled as a monodisperse Brownian hard-sphere fluid diffusing through a polydisperse matrix of fixed hard spheres with a given size distribution. In the Lorentz gas limit (absence of interactions between the mobile particles), we first develop a simple excluded-volume theory to describe the localization transition of the tracer mobile particles. To take into account the interactions among the mobile particles, we adapt the multi-component self-consistent generalized Langevin equation (SCGLE) theory of colloid dynamics, which also allows us to calculate the dynamical arrest transition line, and in general, all the dynamical properties of the mobile particles (mean-squared displacement, self-diffusion coefficient, etc.). The scenarios described by both approaches in the Lorentz gas limit are qualitatively consistent, but the SCGLE formalism describes the dependence of the dynamics of the adsorbed fluid on the polydispersity of the porous matrix at arbitrary concentrations of the mobile spheres and arbitrary volume fractions of the obstacles. Two mechanisms for dynamical arrest (glass transition and localization) are analyzed and we also discuss the crossover between them using the SCGLEs. © 2015 AIP Publishing LLC.

publication date

  • 2015-01-01