Artificial neural network based on genetic algorithm for emissions prediction of a SI gasoline engine Article uri icon

abstract

  • This paper proposes a hybrid learning of artificial neural network (ANN) with the nondominated sorting genetic algorithm-II (NSGAII) to improve accuracy in order to predict the exhaust emissions of a four stroke spark ignition (SI) engine. In the proposed approach, the genetic algorithm (GA) determines initial weights of local linear model tree (LOLIMOT) neural networks. A multi-objective optimization problem is determined. A sensitivity analysis is performed on NSGA-II parameters in order to provide better solutions along the optimal Pareto front. Then, a fuzzy decision maker and the technique for order preference by similarity to ideal solution (TOPSIS) are employed to select compromised solutions among the obtained Pareto solutions. The LOLIMOT-GA responses are compared with the provided by radial basis function (RBF) and multilayer perceptron (MLP) neural networks in terms of correlation coefficient R 2. © 2014 The Korean Society of Mechanical Engineers and Springer-Verlag Berlin Heidelberg.

publication date

  • 2014-01-01