An algorithm for computing typical testors based on elimination of gaps and reduction of columns Article uri icon

abstract

  • Typical testors are useful tools for feature selection and for determining feature relevance in supervised classification problems. Nowadays, computing all typical testors of a training matrix is very expensive; all reported algorithms have exponential complexity depending on the number of columns in the matrix. In this paper, we introduce the faster algorithm BR (Boolean Recursive), called fast-BR algorithm, that is based on elimination of gaps and reduction of columns. Fast-BR algorithm is designed to generate all typical testors from a training matrix, requiring a reduced number of operations. Experimental results using this fast implementation and the comparison with other state-of-the-art related algorithms that generate typical testors are presented. © 2013 World Scientific Publishing Company.

publication date

  • 2013-01-01