Exact Scaling in the Expansion-Modification System
Article
-
- Overview
-
- Research
-
- Identity
-
- Additional Document Info
-
- View All
-
Overview
abstract
-
This work is devoted to the study of the scaling, and the consequent power-law behavior, of the correlation function in a mutation-replication model known as the expansion-modification system. The latter is a biology inspired random substitution model for the genome evolution, which is defined on a binary alphabet and depends on a parameter interpreted as a mutation probability. We prove that the time-evolution of this system is such that any initial measure converges towards a unique stationary one exhibiting decay of correlations not slower than a power-law. We then prove, for a significant range of mutation probabilities, that the decay of correlations indeed follows a power-law with scaling exponent smoothly depending on the mutation probability. Finally we put forward an argument which allows us to give a closed expression for the corresponding scaling exponent for all the values of the mutation probability. Such a scaling exponent turns out to be a piecewise smooth function of the parameter. © 2013 Springer Science Business Media New York.
-
This work is devoted to the study of the scaling, and the consequent power-law behavior, of the correlation function in a mutation-replication model known as the expansion-modification system. The latter is a biology inspired random substitution model for the genome evolution, which is defined on a binary alphabet and depends on a parameter interpreted as a mutation probability. We prove that the time-evolution of this system is such that any initial measure converges towards a unique stationary one exhibiting decay of correlations not slower than a power-law. We then prove, for a significant range of mutation probabilities, that the decay of correlations indeed follows a power-law with scaling exponent smoothly depending on the mutation probability. Finally we put forward an argument which allows us to give a closed expression for the corresponding scaling exponent for all the values of the mutation probability. Such a scaling exponent turns out to be a piecewise smooth function of the parameter. © 2013 Springer Science%2bBusiness Media New York.
publication date
published in
Research
keywords
-
Genome evolution; Power-law decay of correlations; Random substitutions
Identity
Digital Object Identifier (DOI)
Additional Document Info
start page
end page
volume
issue