Difference map and its electronic circuit realization
Article
-
- Overview
-
- Research
-
- Identity
-
- Additional Document Info
-
- View All
-
Overview
abstract
-
In this paper we study the dynamical behavior of the one-dimensional discrete-time system, the so-called iterated map. Namely, a bimodal quadratic map is introduced which is obtained as an amplification of the difference between well-known logistic and tent maps. Thus, it is denoted as the so-called difference map. The difference map exhibits a variety of behaviors according to the selection of the bifurcation parameter. The corresponding bifurcations are studied by numerical simulations and experimentally. The stability of the difference map is studied by means of Lyapunov exponent and is proved to be chaotic according to Devaney%27s definition of chaos. Later on, a design of the electronic implementation of the difference map is presented. The difference map electronic circuit is built using operational amplifiers, resistors and an analog multiplier. It turns out that this electronic circuit presents fixed points, periodicity, chaos and intermittency that match with high accuracy to the corresponding values predicted theoretically. © 2013 Springer Science Business Media Dordrecht.
-
In this paper we study the dynamical behavior of the one-dimensional discrete-time system, the so-called iterated map. Namely, a bimodal quadratic map is introduced which is obtained as an amplification of the difference between well-known logistic and tent maps. Thus, it is denoted as the so-called difference map. The difference map exhibits a variety of behaviors according to the selection of the bifurcation parameter. The corresponding bifurcations are studied by numerical simulations and experimentally. The stability of the difference map is studied by means of Lyapunov exponent and is proved to be chaotic according to Devaney%27s definition of chaos. Later on, a design of the electronic implementation of the difference map is presented. The difference map electronic circuit is built using operational amplifiers, resistors and an analog multiplier. It turns out that this electronic circuit presents fixed points, periodicity, chaos and intermittency that match with high accuracy to the corresponding values predicted theoretically. © 2013 Springer Science%2bBusiness Media Dordrecht.
-
In this paper we study the dynamical behavior of the one-dimensional discrete-time system, the so-called iterated map. Namely, a bimodal quadratic map is introduced which is obtained as an amplification of the difference between well-known logistic and tent maps. Thus, it is denoted as the so-called difference map. The difference map exhibits a variety of behaviors according to the selection of the bifurcation parameter. The corresponding bifurcations are studied by numerical simulations and experimentally. The stability of the difference map is studied by means of Lyapunov exponent and is proved to be chaotic according to Devaney's definition of chaos. Later on, a design of the electronic implementation of the difference map is presented. The difference map electronic circuit is built using operational amplifiers, resistors and an analog multiplier. It turns out that this electronic circuit presents fixed points, periodicity, chaos and intermittency that match with high accuracy to the corresponding values predicted theoretically. © 2013 Springer Science%2bBusiness Media Dordrecht.
publication date
funding provided via
published in
Research
keywords
-
Bifurcation diagram; Bifurcation parameter; Chaotic behavior; Lyapunov exponent; Stability analysis Bifurcation diagram; Bifurcation parameter; Chaotic behaviors; Lyapunov exponent; Stability analysis; Bifurcation (mathematics); Differential equations; Digital control systems; Discrete time control systems; Lyapunov functions; Lyapunov methods
Identity
Digital Object Identifier (DOI)
Additional Document Info
start page
end page
volume
issue