Evaluation of strain caused by coherent precipitates in an Al alloy using TEM techniques Article uri icon

abstract

  • Elastic strains, caused by GP zones in an aged Al alloy, were determined quantitatively using two techniques: Dark Field In-line Holography (DFH) and High Resolution Transmission Electron Microscopy-Geometric Phase Analysis (HRTEM-GPA). The results obtained by both techniques showed that the elastic strain was not uniform along the precipitate-matrix interface. In some areas, it was found that strain had negligible value and this was attributed to the loss of coherence between the lattices. It is suggested that a possible explanation for this fact could be a variation in the vacancies pump mechanism kinetics. To obtain a better interpretation of the experimental deformation maps, a reference GP precipitate-matrix structure was built using QSTEM software. The main advantages of DFH over HRTEM-GPA were a bigger field of view and low electron dose requirements without spatial resolution loss. Another difference found was that crystalline defects such as dislocations were evidenced by HRTEM-GPA in contrast to the result obtained by DFH. However, strain measurements were affected by mask size effect in the former. © 2012 Elsevier Inc.

publication date

  • 2012-01-01