Classification and agroclimatic zoning using the relationship between precipitation and evapotranspiration in the state of Yucatán, Mexico Article uri icon

abstract

  • The length of the growing period (LGP) is determined by the relationship between precipitation and evaopotranspiration, and it indicates the continuous period during the year in which the humidity is suitable for the development of rainfed crops. The aim was to develop a cartographic model of the LGP at a scale of 1: 250 000 for use in planning rainfed agriculture in the state of Yucatán. Data for 1961-2003 from 40 meteorological stations were used with the graphic method to estimate the characteristics of the LGP by means of the monthly precipitation and the potential monthly evapotranspiration. The meteorological stations were classified with the properties of the LGP using decision trees. The meteorological stations were classified in terms of their LGP as very low (1 2 months), low (5 months), medium (6 months), high (7 months) and very high (8 to 10 months). Geostatistical analysis showed that the LGP data were adjusted to a semivariogram with a spherical model. Cross validation of the interpolation presented a r2= 0.654 and a mean error of 0.03, which indicates the validity of the interpolation and production of the map. The major part of the state has a LGP longer than seven months.
  • The length of the growing period (LGP) is determined by the relationship between precipitation and evaopotranspiration, and it indicates the continuous period during the year in which the humidity is suitable for the development of rainfed crops. The aim was to develop a cartographic model of the LGP at a scale of 1: 250 000 for use in planning rainfed agriculture in the state of Yucatán. Data for 1961-2003 from 40 meteorological stations were used with the graphic method to estimate the characteristics of the LGP by means of the monthly precipitation and the potential monthly evapotranspiration. The meteorological stations were classified with the properties of the LGP using decision trees. The meteorological stations were classified in terms of their LGP as very low (1%2b2 months), low (5 months), medium (6 months), high (7 months) and very high (8 to 10 months). Geostatistical analysis showed that the LGP data were adjusted to a semivariogram with a spherical model. Cross validation of the interpolation presented a r2= 0.654 and a mean error of 0.03, which indicates the validity of the interpolation and production of the map. The major part of the state has a LGP longer than seven months.

publication date

  • 2011-01-01