Fluvial response to Holocene climate change in low-order streams of central Mexico Article uri icon

abstract

  • Alluvial sequences constitute a recognised source of information on past environmental change, but one that has scarcely been tapped in central Mexico. This paper reviews what is currently known about the Holocene alluvial stratigraphy of the region, focusing on the interplay between climate and the pace and style of sedimentation in the incised headwater reaches of stream networks. The records obtained in five different drainage basins - four in the state of Tlaxcala and one in Guanajuato - are presented and compared to published reconstructions of climate change. A near-synchronous incision of all stream networks occurred close to 10 200 14C a BP in response to an increase in precipitation and stream discharge. A spell of very humid but markedly seasonal conditions ensued, resulting in the formation of wet meadows along streams and the accumulation of thick fine-textured valley fills dominated by cumulic soil A horizons. After 9100 14C a BP a transition to a warmer and more arid climate provoked the thinning of vegetation cover on slopes, accelerated runoff and increased sediment delivery to streams. The aggradation of coarser-textured valley fills poor in organic matter set in. It ceased or slowed down significantly after a few millennia as the studied stream reaches achieved a near-graded condition adjusted to the relatively stable climate. Arid mid Holocene conditions are also reflected in the abundant precipitation of secondary carbonates in Guanajuato. At 3100 14C a BP higher precipitation caused more frequent flooding and a resumption of aggradation. Shortly after that date sedentary farmers colonised Tlaxcala. Agriculture altered runoff and sediment delivery to streams and accelerated cut-and-fill cycles on a scale that masked the impact of any climatic fluctuations. Guanajuato was colonised later and its alluvial record suggests the persistence of a humid climate at least until 1000 14C a BP. © 2009 John Wiley %26amp; Sons, Ltd.

publication date

  • 2010-01-01