Quantification of polycyclic aromatic hydrocarbons based on comprehensive two-dimensional gas chromatography-isotope dilution mass spectrometry
Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Comprehensive two-dimensional gas chromatography (GC × GC) offers favourable resolution and sensitivity compared with conventional one-dimensional gas chromatography (1D-GC), as reported in many studies. These characteristics are of major interest when analytes are in trace concentration, and are present in complex mixtures, as is the case of polycyclic aromatic hydrocarbons (PAHs) in atmospheric particulate samples. Whilst GC × GC has been widely applied to identification of different types of analytes in several matrices, less seldom has it been used for quantification of these analytes. Although several quantitative methods have been proposed, they may be tedious and/or require considerable user development. Whereas quantification in 1D-GC is a routine and well-established procedure, in GC × GC, it is not so straightforward, especially where novel or untested procedures have yet to be incorporated into software packages. In the present study, it is proposed that a subset of the modulated peaks generated for each solute may be summed, based on the specific target ion mass of each compound present in a certified standard reference material (SRM) 1649a (urban dust). The ratio between a PAH and its corresponding deuterated (PAH-d) form showed that there is no statistical loss of sensitivity when this ratio is calculated based on whether the total sum of modulated peaks, or if only the two or the three most intense modulated peaks, are employed. Manual integration may be required, and here was found to give more acceptable values than automatic integration. Automated integration has been shown here to underestimate the modulated peak responses when low concentrations of PAHs were analyzed. Although for most PAHs good agreement with the certified values were observed, the analytical method needs to be further optimized for some of the other PAH, as can be see with those PAH with high variability in the range of urban dust analyzed. © 2008 Elsevier B.V. All rights reserved.
publication date
funding provided via
published in
Research
keywords
Atmospheric particulates; Comprehensive two-dimensional gas chromatography; GC × GC; Modulation ratio; PAH; Standard reference material; Surrogate standards; Urban dust Aromatic compounds; Aromatic hydrocarbons; Aromatization; Atmospheric composition; Chemicals; Chromatographic analysis; Chromatography; Computer software; Deuterium; Dust; High performance liquid chromatography; Hydrocarbons; Isotopes; Laws and legislation; Mass spectrometry; Organic compounds; Photoresists; Polycyclic aromatic hydrocarbons; Smoke detectors; Software packages; Standards; Two dimensional; Analytes; Analytical methods; Applied (CO); Atmospheric particulates; Certified values; Complex mixtures; Comprehensive two dimensional gas chromatography; Different types; Elsevier (CO); high variability; Intense (CO); Ion mass; Isotope-dilution mass spectrometry (IDMS); Low concentrations; One-dimensional; Polycyclic aromatic hydrocarbons (PAHs); Quantitative methods; Standard Reference Material (SRM); Trace concentrations; Urban dust; Gas chromatography; polycyclic aromatic hydrocarbon; article; computer program; dust; gas chromatography; isotope dilution assay; mass spectrometry; particulate matter; priority journal; quantitative analysis; time of flight mass spectrometry; Gas Chromatography-Mass Spectrometry; Polycyclic Hydrocarbons, Aromatic
Identity
Digital Object Identifier (DOI)
PubMed ID
Additional Document Info
start page
end page
volume
issue