The laminar horseshoe vortex upstream of a short-cylinder confined in a channel formed by a pair of parallel plates Article uri icon

abstract

  • A flow visualization experiment was performed in order to characterize the laminar horseshoe vortex system that appears upstream of the junction of a short cylinder and a pair of flat parallel plates. The experiments were performed in a water tunnel and the technique used for flow visualization was laser illumination of seeded particles whose traces were captured using long exposure photography. Geometrical and flow parameters, such as Reynolds number and height-to-diameter ratio of the cylinders, are varied during the experiments and the flow regimes are analyzed as a function of these parameters. The behavior of vortex systems is reported. For low Reynolds number cases, the vortices stay in a fixed position, as the Reynolds number is increased the number of vortices grows and for larger Reynolds numbers the vortex system becomes oscillatory and for further increases it becomes periodic. As for the dimensionless height of the cylinders, the vortex system is weak for short cylinders and increases its strength and number of vortices as the cylinder height-to-diameter ratio is increased. For further increases in height the vortex system do not change, which shows that the flow becomes independent of the height-to-diameter ratio for sufficiently tall cylinders. Information of the frequency of appearance of periodic vortices is also included. © 2006 The Visualization Society of Japan and Ohmsha, Ltd.

publication date

  • 2006-01-01