Self-consistent generalized Langevin equation for colloidal mixtures Article uri icon

abstract

  • A self-consistent theory of collective and tracer diffusion in colloidal mixtures is presented. This theory is based on exact results for the partial intermediate scattering functions derived within the framework of the generalized Langevin equation formalism, plus a number of conceptually simple and sensible approximations. The first of these consists of a Vineyard-like approximation between collective and tracer diffusion, which writes the collective dynamics in terms of the memory function related to tracer diffusion. The second consists of interpolating this only unknown memory function between its two exact limits at small and large wave vectors; for this, a phenomenologically determined, but not arbitrary, interpolating function is introduced: a Lorentzian with its inflection point located at the first minimum of the partial static structure factor. The small wave-vector exact limit involves a time-dependent friction function, for which we take a general approximate result, previously derived within the generalized Langevin equation formalism. This general result expresses the time-dependent friction function in terms of the partial intermediate scattering functions, thus closing the system of equations into a fully self-consistent scheme. This extends to mixtures a recently proposed self-consistent theory developed for monodisperse suspensions [Yeomans-Reyna and Medina-Noyola, Phys. Rev. E 64, 066114 (2001)]. As an illustration of its quantitative accuracy, its application to a simple model of a binary dispersion in the absence of hydrodynamic interactions is reported. © 2005 The American Physical Society.

publication date

  • 2005-01-01