Pesticides luminescent sensing by a Tb3 -doped Zn metal-organic framework with selectivity towards parathion Article uri icon

abstract

  • Organophosphorus pesticides (OPPs) such as parathion have extensive uses in agriculture and household applications. Chronic exposure to these pesticides can cause severe health and environmental issues. Therefore, a current ecological concern is associated with accumulating these noxious OPPs in food and water sources. In this work, a new Tb3 -doped Zn-LMOF (Zn-LMOF= (3D) {[Zn3(1,4 benzenedicarboxylate)3(EtOH)2]·(EtOH)0.6}∞) was synthesized by a solvent-free reaction between the Zn-LMOF and the salt TbCl3·6H2O using a high-speed ball milling. The Tb%40Zn-LMOF was thoroughly characterized by multiple spectroscopic tools, including Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy, and studied in-depth as a luminescent sensor for a series of pesticides (parathion, malathion, methalaxil, carbofuran, iprodione, captan and glyphosate) in aqueous methanol. The Tb%40Zn-LMOF is a long-lived green-emitting compound with luminescence originated by an efficient antenna effect from the excited energy levels of Zn-LMOF toward the 5D state of Tb3  ions, as it is displayed by its strong emission bands at 488, 545, 585, and 620 nm and a lifetime of 1.01 ms upon excitation at 290 nm. Additions of pesticides to a neutral methanolic dispersion of Tb%40Zn-LMOF modified its green emission intensity with a pronounced selectivity toward parathion within the micromolar concentration range. The detection limit for parathion was calculated to be 3.04 ± 0.2 μM for Tb%40Zn-LMOF. Based on 31P NMR and mass spectrometry studies, it is attributed to the release of lanthanide ions from Tb%40Zn-LMOF with the simultaneous formation of a Tb3 -parathion complex.

publication date

  • 2024-01-01