In vitro gas production of foliage from three browse tree species treated with different dose levels of exogenous fibrolytic enzymes
Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
The aim of this study was to evaluate the effect of different dose levels of exogenous fibrolytic enzymes (EFE) on in vitro ruminal fermentation kinetics and energy utilization of foliages from three browse trees (Pithecellobium dulce, Heliocarpus velutinus and Guazuma ulmifolia). Mixture of EFE product was added to the leaves of the three browse tree species at three dose levels: 0 (control), 3.5 and 7.0 mg/g of DM. Chemical composition of the foliages, including plant secondary metabolites such as total phenolics (TP), saponins (SAP) and aqueous fraction (AF), was determined. In addition, in vitro assaying of ruminal gas production kinetics was determined for the three browse three foliages treated with EFE. P. dulce had the highest crude protein content (p < 0.05), whereas G. ulmifolia had the highest content of neutral detergent fibre and SAP (p < 0.05) and H. velutinus had the lowest content of TP (p < 0.05). The interaction between tree species and dose level of EFE was significant (p < 0.05) for gas production (GP) at 24 h of incubation, parameters b and c of the accumulated GP curve, short-chain fatty acids (SCFA) and metabolizable energy (ME). The lowest (p < 0.01) extent of accumulated GP as well as the b and c values occurred in G. ulmifolia at 0 mg EFE/g DM. P. dulce had the highest (p < 0.05) values for ME and SCFA at the highest dose of EFE. Tree species and dose level had significant (p < 0.05) effects on all parameters describing in vitro ruminal fermentation kinetics and energy utilization. Addition of EFE improved the fermentation kinetics of the browse species considered in this study. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
publication date
published in
Research
keywords
browse tree species; exogenous enzyme; gas production analysis; animal food; chemistry; Fabaceae; fermentation; Malvaceae; plant leaf; species difference; tree; Animal Feed; Fabaceae; Fermentation; Malvaceae; Plant Leaves; Species Specificity; Trees
Identity
Digital Object Identifier (DOI)
PubMed ID
Additional Document Info
start page
end page
volume
issue