Non-Contact HR Monitoring via Smartphone and Webcam during Different Respiratory Maneuvers and Body Movements Article uri icon

abstract

  • As a reliable indicator for individual%27s healthiness conditions, heart rate (HR) has been widely considered and used. Imaging photoplethysmography (iPPG) is recently highlighted as a promising HR measurement method, due to its non-contact characteristics, by extracting the HR from facial video recordings. In this study, we propose a camera-based HR monitoring technique that estimates HR information from iPPG signals extracted from a video sequence. Videos were recorded using a smartphone or a laptop camera. We adopted the plane-orthogonal-to-skin (POS) method to compute iPPG. The proposed method is evaluated by applying it to extract HR of 9 subjects at rest and during two motion conditions (lateral and frontal) while they were performing several respiratory maneuvers-spontaneous, metronome, and forced. Automatic face detection algorithms were implemented in the proposed method. Our experimental results show that mean values of HR have 0.56%25 error and 99.4%25 accuracy when compared to HR calculated from the gold-standard electrocardiography (ECG) reference in diverse conditions of motions and respiratory maneuvers. © 2013 IEEE.
  • As a reliable indicator for individual's healthiness conditions, heart rate (HR) has been widely considered and used. Imaging photoplethysmography (iPPG) is recently highlighted as a promising HR measurement method, due to its non-contact characteristics, by extracting the HR from facial video recordings. In this study, we propose a camera-based HR monitoring technique that estimates HR information from iPPG signals extracted from a video sequence. Videos were recorded using a smartphone or a laptop camera. We adopted the plane-orthogonal-to-skin (POS) method to compute iPPG. The proposed method is evaluated by applying it to extract HR of 9 subjects at rest and during two motion conditions (lateral and frontal) while they were performing several respiratory maneuvers-spontaneous, metronome, and forced. Automatic face detection algorithms were implemented in the proposed method. Our experimental results show that mean values of HR have 0.56%25 error and 99.4%25 accuracy when compared to HR calculated from the gold-standard electrocardiography (ECG) reference in diverse conditions of motions and respiratory maneuvers. © 2013 IEEE.

publication date

  • 2021-01-01