Proteomics approaches to understand cell biology and virulence of Entamoeba histolytica protozoan parasite Review uri icon

abstract

  • Entamoeba histolytica is the primitive eukaryotic parasite responsible of human amoebiasis, a disease characterized by bloody intestinal diarrhea and invasive extraintestinal illness. The knowledge of the complete genome sequence of virulent E. histolytica and related non-pathogenic species allowed the development of novel genome-wide methodological approaches including protein expression profiling and cellular proteomics in the so called post-genomic era. Proteomics studies have greatly increased our understanding of the cell biology of this ancient parasite. This review summarizes the current works concerning proteomics studies on cell biology, life cycle, virulence and pathogenesis, novel therapies, and protein expression regulation mechanisms in E. histolytica parasite. Also, we discuss the use of proteomics data for the development of novel therapies, the identification of potential disease biomarkers and differential diagnosis between species. Significance: Entamoeba histolytica is the unicellular protozoan parasite responsible of human amoebiasis, a serious disease with worldwide distribution characterized by bloody intestinal diarrhea and invasive extraintestinal illness including peritonitis and liver, pulmonary and brain abscesses. The post-genomic era allowed the development of proteomic studies including protein expression profiling and cellular proteomics. These proteomics studies have greatly increased our understanding on cell biology, life cycle (cyst-trophozoite conversion), virulence, pathogenesis, novel therapies, and protein expression regulation mechanisms in E. histolytica. Importantly, proteomics has revealed the identity of proteins related to novel therapies, and the identification of potential disease biomarkers and proteins with use in diagnosis between species. Hopefully in the coming years, and through the use of more sophisticated omics tools, including deep proteomics, a more complete set of proteins involved in the aforementioned cellular processes can be obtained to understand the biology of this ancient eukaryote. © 2020 Elsevier B.V.

publication date

  • 2020-01-01