Eicosapentaenoic and docosahexaenoic acid supplementation during early gestation modified relative abundance on placenta and fetal liver tissue mRNA and concentration pattern of fatty acids in fetal liver and fetal central nervous system of sheep Article uri icon

abstract

  • In sheep, polyunsaturated fatty acid (PUFA) supplementations in late gestation increases the growth of offspring; however, there is a lack of evidence on the effect of PUFA supplementation during early gestation. Thus, the objective of this study was to evaluate the effect of dietary supplementation of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in early gestation pregnant ewes on fatty acid concentration of fetal liver (FL) and fetal central nervous system (FCNS), and relative abundance of the mRNA for genes associated with transport and metabolism of fatty acids in FL and placenta. A total of 12 ewes, block for stage of gestation were fed a diet containing 1.6%25 (dry matter basis) monounsaturated fatty acids (MUFA) or EPA DHA during the first 45 days of gestation. A cesarean section was conducted on day 45 of gestation to collect placenta (caruncle and cotyledon), FL, and FCNS. Relative abundance of mRNA in FL and FCNS and fatty acid concentration were analyzed using a 2x2 factorial arrangement of treatments considering fatty acid supplementation and tissue as the main factors. Concentrations of C18:1 isomers increase (P < 0.05) in FL and FCNS with MUFA supplementation; the FL and FCNS had a greater concentration of C20:3(n-6), C20:3(n-3), C22:1, C22:5 and C22:6 (P < 0.05) with EPA DHA supplementation. In FL, the relative abundance of LPL mRNA was greater (P = 0.02) as a result of MUFA supplementation. In placenta, there was a FA x tissue interaction for relative abundance of DNMT3b and FFAR-4 mRNA (P < 0.05). Fetus from MUFA-supplemented dams had a greater relative abundance of FABP-4 mRNA (P < 0.05). Results indicate supplementation with EPA DHA during early gestation increases the total EPA and DHA in FL. For the placenta, EPA DHA supplementation led to an increase in the relative abundance of lipid mRNA for transport genes. © 2020 Roque-Jimenez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  • In sheep, polyunsaturated fatty acid (PUFA) supplementations in late gestation increases the growth of offspring; however, there is a lack of evidence on the effect of PUFA supplementation during early gestation. Thus, the objective of this study was to evaluate the effect of dietary supplementation of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in early gestation pregnant ewes on fatty acid concentration of fetal liver (FL) and fetal central nervous system (FCNS), and relative abundance of the mRNA for genes associated with transport and metabolism of fatty acids in FL and placenta. A total of 12 ewes, block for stage of gestation were fed a diet containing 1.6%25 (dry matter basis) monounsaturated fatty acids (MUFA) or EPA%2bDHA during the first 45 days of gestation. A cesarean section was conducted on day 45 of gestation to collect placenta (caruncle and cotyledon), FL, and FCNS. Relative abundance of mRNA in FL and FCNS and fatty acid concentration were analyzed using a 2x2 factorial arrangement of treatments considering fatty acid supplementation and tissue as the main factors. Concentrations of C18:1 isomers increase (P < 0.05) in FL and FCNS with MUFA supplementation; the FL and FCNS had a greater concentration of C20:3(n-6), C20:3(n-3), C22:1, C22:5 and C22:6 (P < 0.05) with EPA%2bDHA supplementation. In FL, the relative abundance of LPL mRNA was greater (P = 0.02) as a result of MUFA supplementation. In placenta, there was a FA x tissue interaction for relative abundance of DNMT3b and FFAR-4 mRNA (P < 0.05). Fetus from MUFA-supplemented dams had a greater relative abundance of FABP-4 mRNA (P < 0.05). Results indicate supplementation with EPA%2bDHA during early gestation increases the total EPA and DHA in FL. For the placenta, EPA%2bDHA supplementation led to an increase in the relative abundance of lipid mRNA for transport genes. © 2020 Roque-Jimenez et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

publication date

  • 2020-01-01