Trajectory tracking error using fractional order time-delay recurrent neural networks using Krasovskii-Lur'e functional for Chua's circuit via inverse optimal control Article uri icon

abstract

  • This paper presents an application of a Fractional-Order Time Delay Neural Networks to chaos synchronization. The two main methodologies, on which the approach is based, are fractional-order time-delay recurrent neural networks and the fractional-order inverse optimal control for nonlinear systems. The problem of trajectory tracking is studied, based on the fractional-order Lyapunov-Krasovskii and Lur%27e theory, that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a reference function is obtained. The method is illustrated for the synchronization, the analytic results we present a trajectory tracking simulation of a fractional-order time-delay dynamical network and the Fractional Order Chua%27s circuits. © 2019 Sociedad Mexicana de Fisica.
  • This paper presents an application of a Fractional-Order Time Delay Neural Networks to chaos synchronization. The two main methodologies, on which the approach is based, are fractional-order time-delay recurrent neural networks and the fractional-order inverse optimal control for nonlinear systems. The problem of trajectory tracking is studied, based on the fractional-order Lyapunov-Krasovskii and Lur'e theory, that achieves the global asymptotic stability of the tracking error between a delayed recurrent neural network and a reference function is obtained. The method is illustrated for the synchronization, the analytic results we present a trajectory tracking simulation of a fractional-order time-delay dynamical network and the Fractional Order Chua's circuits. © 2019 Sociedad Mexicana de Fisica.

publication date

  • 2020-01-01