Expression levels of circulating microRNAs-126, -155, and -145 in Mexican women exposed to polycyclic aromatic hydrocarbons through biomass fuel use Article uri icon


  • Human exposure to polycyclic aromatic hydrocarbons (PAHs) has been considered a risk determinant for the development of cardiovascular diseases (CVD). Therefore, the aim of this study was to assess expression levels of vascular-related miRNAs, miR-126, miR-155, and miR-145, in plasma from women (aged 19–81 years) exposed (n = 100) and non-exposed (n = 20) to PAHs via biomass combustion smoke.1-hydroxypyrene (1-OHP) was determined in urine as a biomarker of exposure to PAHs using high-resolution liquid chromatography. Plasma expression levels of proposed miRNAs were determined by quantitative real-time PCR. Additionally, traditional risk factors (age, blood pressure, serum lipid profile, blood glucose, and among others) associated with CVD were evaluated. Urinary 1-OHP concentrations and plasma expression levels of miR-126 and miR-155 were significantly higher (P < 0.05) in women using wood as a fuel source in their homes (indoor) compared to women from the reference group (non-exposed to biomass smoke). Besides, multivariate linear regression analyses revealed that miR-126[β = 0.61; 95%25 confidence interval (0.32–0.90)] and miR-155 [β = 0.45; 95%25 confidence interval (0.13–0.84)] expression levels were significantly associated with urinary 1-OHP concentrations after being adjusted by traditional risk factors (P < 0.05). In contrast, no significant relationship was found between miR-145 and urinary 1-OHP levels. Furthermore, miRNAs assessed in this investigation are associated with CVD events. Consequently, actions to reduce exposure to PAHs in the evaluated population are warranted. Environ. Mol. Mutagen. 60:546–558, 2019. © 2019 Wiley Periodicals, Inc. © 2019 Wiley Periodicals, Inc.

publication date

  • 2019-01-01