Assessment by Monte Carlo computer simulations of the phase behavior of hard spherocylinders confined within cylindrical cavities Article uri icon

abstract

  • The phase behavior of hard spherocylinders (HSCs) confined in cylindrical cavities is studied using Monte Carlo simulations in the canonical ensemble. Results are presented for different values of the particles%27 aspect ratio l/σ, where l and σ are the length and diameter of the cylinder and hemispherical caps, respectively. Finite cavities with periodic boundary conditions along the principal axis of the cavities have been considered, where the cavity%27s principal axis is along the z-direction. We first focus our study in the structure induced by varying the degree of confinement, determining the HSC phase diagram for aspect ratios l/σ = 3, 5, 7, and 9, at a fixed packing fraction η = 0.071. By compressing the cavities along the radial direction, the isotropic phase becomes stable before the nematic phase as the length of the cavities is increased, resulting in a second-order transition. The occurrence of phase transitions has also been determined by varying η for constant values of the cavity%27s length L. Systems with low aspect ratios, l/σ = 3, 5, 7, and 9, exhibit first-order transitions with chiral, paranematic, and isotropic phases, whereas for larger HSCs, l/σ = 50, 70, and 100, the transitions are second order with paranematic, nematic, and isotropic phases, in contrast with the behavior of non-confined systems, with first-order transitions for isotropic, nematic, smectic-A, and solid phases. © 2017 Author(s).
  • The phase behavior of hard spherocylinders (HSCs) confined in cylindrical cavities is studied using Monte Carlo simulations in the canonical ensemble. Results are presented for different values of the particles' aspect ratio l/σ, where l and σ are the length and diameter of the cylinder and hemispherical caps, respectively. Finite cavities with periodic boundary conditions along the principal axis of the cavities have been considered, where the cavity's principal axis is along the z-direction. We first focus our study in the structure induced by varying the degree of confinement, determining the HSC phase diagram for aspect ratios l/σ = 3, 5, 7, and 9, at a fixed packing fraction η = 0.071. By compressing the cavities along the radial direction, the isotropic phase becomes stable before the nematic phase as the length of the cavities is increased, resulting in a second-order transition. The occurrence of phase transitions has also been determined by varying η for constant values of the cavity's length L. Systems with low aspect ratios, l/σ = 3, 5, 7, and 9, exhibit first-order transitions with chiral, paranematic, and isotropic phases, whereas for larger HSCs, l/σ = 50, 70, and 100, the transitions are second order with paranematic, nematic, and isotropic phases, in contrast with the behavior of non-confined systems, with first-order transitions for isotropic, nematic, smectic-A, and solid phases. © 2017 Author(s).

publication date

  • 2017-01-01