Complex dynamics of a fiber laser in non-stationary pulsed operation Article uri icon

abstract

  • Conventional mode locking is characterized by the generation of a stable train of optical pulses. Even in the noise-like pulsing regime of fiber lasers, sometimes described as partial mode locking, a periodic train of waveforms is still generated. In this work we study the dynamics of a figure-eight fiber laser away from the stable noise-like pulsing regime. By analyzing sequences of time-domain measurements performed with ns resolution, we reveal a wide range of puzzling dynamics, in which sub-structures emerge and drift away from the main bunch, decay or grow in a step-like manner, before vanishing abruptly. In some cases, sub-packets also concentrate in the central part of the period, forming one or multiple wide clouds that merge or split over time scales of seconds or minutes. Spontaneous transitions between these multiple states occur in a non-periodic manner, so that no quasi-stationary behavior is found over long time scales. These results provide a dramatic illustration of the extremely rich dynamics taking place in fiber lasers at the frontier of mode locking. ©2016 Optical Society of America.

publication date

  • 2016-01-01