Householder methods for quantum circuit design Article uri icon

abstract

  • Algorithms to resolve multiple-qubit unitary transformations into a sequence of simple operations on one-qubit subsystems are central to the methods of quantum-circuit simulators. We adapt Householder’s theorem to the tensor-product character of multi-qubit state vectors and translate it to a combinatorial procedure to assemble cascades of quantum gates that recreate any unitary operation U acting on n-qubit systems. U may be recreated by any cascade from a set of combinatorial options that, in number, are not lesser than super-factorial of 2n j 2 n 1 j!. Cascades are assembled with one-qubit controlled-gates of a single type. We complement the assembly procedure with a new algorithm to generate Gray codes that reduce the combinatorial options to cascades with the least number of CNOT gates. The combined procedure —factorization, gate assembling, and Gray ordering — is illustrated on an array of three qubits. © 2018 Canadian Society for Mechanical Engineering. All rights reserved.

publication date

  • 2016-01-01