Localization of the calmodulin- and the actin-binding sites of caldesmon Article uri icon

abstract

  • Expression of the C-terminal third of chicken gizzard caldesmon in Escherichia coli, using the Nagai vector (Nagai, K., and Thogersen, H.V. (1987) Methods Enzmol. 153, 461-481), produces a cII-caldesmon fusion protein (27 kDa) with caldesmon sequence beginning at Lys579. Degradation during purification yields five peptides with molecular masses of 24, 22, 19 (two peptides), and 15 kDa. The 24-kDa peptide begins at Phe581; the 22-kDa peptide begins at Leu597, the two 19-kDa peptides begin at Phe581 and Val629, respectively; the 15-kDa peptide also begins at Val629. We estimate that the 15-kDa and one of the 19-kDa peptides end near Leu710. Site-directed mutagenesis was used to produce truncated peptides with known C termini; one peptide (17 kDa) terminates at Asn675. Digestion of the fragments with chymotrypsin generates a second 15-kDa fragment that begins at Ser666 (15K%27). All of the peptides, with the exception of 15K%27, bind Ca2%2b-calmodulin-Sepharose and share a common 37-amino acid peptide between Val629 and Ser666, suggesting this contains the calmodulin binding site. Comparison with published sequences (Takagi, T., Yazawa, M., Ueno, T., Suzuki, S., and Yagi, K. (1989) J. Biochem. (Tokyo) 106, 778-783 and Bartegi, A., Fattoum, A., Derancourt, J., and Kassab, R. (1990) J. Biol. Chem. 265, 15231-15238) for other calmodulin-binding fragments further restricts the binding site to 7 residues, Trp-Glu-Lys-Gly-Asn-Val-Phe, between Trp659 and Ser666. All of the fragments, except the two 15-kDa peptides, co-sediment with F-actin, indicating that there are two segments in the C-terminal third of caldesmon that can interact with F-actin: one between Leu597 and Val629, the other between Arg711 and Pro756. Although separated in the primary sequence, these domains may interact with the calmodulin-binding region in the folded structure.
  • Expression of the C-terminal third of chicken gizzard caldesmon in Escherichia coli, using the Nagai vector (Nagai, K., and Thogersen, H.V. (1987) Methods Enzmol. 153, 461-481), produces a cII-caldesmon fusion protein (27 kDa) with caldesmon sequence beginning at Lys579. Degradation during purification yields five peptides with molecular masses of 24, 22, 19 (two peptides), and 15 kDa. The 24-kDa peptide begins at Phe581; the 22-kDa peptide begins at Leu597, the two 19-kDa peptides begin at Phe581 and Val629, respectively; the 15-kDa peptide also begins at Val629. We estimate that the 15-kDa and one of the 19-kDa peptides end near Leu710. Site-directed mutagenesis was used to produce truncated peptides with known C termini; one peptide (17 kDa) terminates at Asn675. Digestion of the fragments with chymotrypsin generates a second 15-kDa fragment that begins at Ser666 (15K'). All of the peptides, with the exception of 15K', bind Ca2%2b-calmodulin-Sepharose and share a common 37-amino acid peptide between Val629 and Ser666, suggesting this contains the calmodulin binding site. Comparison with published sequences (Takagi, T., Yazawa, M., Ueno, T., Suzuki, S., and Yagi, K. (1989) J. Biochem. (Tokyo) 106, 778-783 and Bartegi, A., Fattoum, A., Derancourt, J., and Kassab, R. (1990) J. Biol. Chem. 265, 15231-15238) for other calmodulin-binding fragments further restricts the binding site to 7 residues, Trp-Glu-Lys-Gly-Asn-Val-Phe, between Trp659 and Ser666. All of the fragments, except the two 15-kDa peptides, co-sediment with F-actin, indicating that there are two segments in the C-terminal third of caldesmon that can interact with F-actin: one between Leu597 and Val629, the other between Arg711 and Pro756. Although separated in the primary sequence, these domains may interact with the calmodulin-binding region in the folded structure.

publication date

  • 1991-01-01