A novel automatic method for monitoring tourette motor tics through a wearable device Article uri icon


  • The aim of this study was to propose a novel automatic method for quantifying motor-tics caused by the Tourette Syndrome (TS). In this preliminary report, the feasibility of the monitoring process was tested over a series of standard clinical trials in a population of 12 subjects affected by TS. A wearable instrument with an embedded three-axial accelerometer was used to detect and classify motor tics during standing and walking activities. An algorithm was devised to analyze acceleration data by: eliminating noise; detecting peaks connected to pathological events; and classifying intensity and frequency of motor tics into quantitative scores. These indexes were compared with the video-based ones provided by expert clinicians, which were taken as the gold-standard. Sensitivity, specificity, and accuracy of tic detection were estimated, and an agreement analysis was performed through the least square regression and the Bland-Altman test. The tic recognition algorithm showed sensitivity = 80.8%25 ± 8.5%25 (mean ± SD), specificity = 75.8%25 ± 17.3%25, and accuracy = 80.5%25 ± 12.2%25. The agreement study showed that automatic detection tended to overestimate the number of tics occurred. Although, it appeared this may be a systematic error due to the different recognition principles of the wearable and video-based systems. Furthermore, there was substantial concurrency with the gold-standard in estimating the severity indexes. The proposed methodology gave promising performances in terms of automatic motortics detection and classification in a standard clinical context. The system may provide physicians with a quantitative aid for TS assessment. Further developments will focus on the extension of its application to everyday long-term monitoring out of clinical environments. © 2010 Movement Disorder Society.

publication date

  • 2010-01-01