A semi-conducting polypyrrole/coffee grounds waste composite for rhodamine B dye adsorption Article uri icon

abstract

  • A composite based on coffee grounds waste (CGW) coated with the semi-conducting polypyrrole (PPy) was prepared by pyrrole polymerization using potassium persulfate as oxidant. The composite was characterized by FTIR spectroscopy, cyclic voltammetry, UV/vis spectroscopy, scanning electron microscopy (SEM) and TGA analysis. SEM analysis showed homogeneous coating of coffee fibers with spherical nanoparticles of PPy with diameters in the range of 200–300 nm. Aqueous adsorption experiments of rhodamine B dye (RhB) onto the as-prepared composite were performed. The effect of pH and initial dye concentration (C0) on the adsorption behavior was studied. The results showed that this material was an efficient adsorbent of RhB dye at alkaline pH. The adsorption experiments were set at C0 = 200 mg/L and initial pH values of 2.0, 3.25 and 9.0, the adsorption capacities were 7.22, 13.8, and 19.0 mg of dye/g of the composite, respectively. Nonetheless, when pH was maintained at 9.0 throughout adsorption time, the adsorption capacity increased to 32 mg of dye/g of the composite. When performing adsorption tests using pure CGW, dye adsorption was insignificant at any pH level. Adsorption isotherm for RhB at controlled pH of 9.0 was well described by the Redlich–Peterson model and by the typical Langmuir adsorption model with a theoretical maximum adsorption capacity (qmax) of 50.59 mg of dye/g of composite. © 2018, Iran Polymer and Petrochemical Institute.

publication date

  • 2018-01-01