Multi-Scale Evaluation of Sleep Quality Based on Motion Signal from Unobtrusive Device
Article
-
- Overview
-
- Research
-
- Identity
-
- Additional Document Info
-
- View All
-
Overview
abstract
-
Sleep disorders are a growing threat nowadays as they are linked to neurological, cardiovascular and metabolic diseases. The gold standard methodology for sleep study is polysomnography (PSG), an intrusive and onerous technique that can disrupt normal routines. In this perspective, m-Health technologies offer an unobtrusive and rapid solution for home monitoring. We developed a multi-scale method based on motion signal extracted from an unobtrusive device to evaluate sleep behavior. Data used in this study were collected during two different acquisition campaigns by using a Pressure Bed Sensor (PBS). The first one was carried out with 22 subjects for sleep problems, and the second one comprises 11 healthy shift workers. All underwent full PSG and PBS recordings. The algorithm consists of extracting sleep quality and fragmentation indexes correlating to clinical metrics. In particular, the method classifies sleep windows of 1-s of the motion signal into: displacement (DI), quiet sleep (QS), disrupted sleep (DS) and absence from the bed (ABS). QS proved to be positively correlated ((Formula presented.)) to Sleep Efficiency (SE) and DS/DI positively correlated ((Formula presented.)) to the Apnea-Hypopnea Index (AHI). The work proved to be potentially helpful in the early investigation of sleep in the home environment. The minimized intrusiveness of the device together with a low complexity and good performance might provide valuable indications for the home monitoring of sleep disorders and for subjects’ awareness. © 2022 by the authors.
publication date
published in
Research
keywords
-
multi-scale analysis; pressure bed sensor (PBS); shift-working; sleep apnea–hypopnea syndrome (SAHS); sleep monitoring; unobtrusive measure Patient monitoring; Sleep research; Bed sensors; Motion signals; Multi scale analysis; Pressure bed sensor; Shift working; Sleep apnea-hypopnea syndromes; Sleep apnea–hypopnea syndrome; Sleep monitoring; Sleep quality; Unobtrusive measure; Quality control; human; polysomnography; sleep; sleep disordered breathing; sleep quality; Humans; Polysomnography; Sleep; Sleep Apnea Syndromes; Sleep Apnea, Obstructive; Sleep Quality
Identity
Digital Object Identifier (DOI)
PubMed ID
Additional Document Info
start page
end page
volume
issue