Highly efficient visible-LED-driven photocatalytic degradation of tetracycline and rhodamine B over Bi2WO6/BiVO4 heterostructures decorated with silver and graphene synthesized by a novel green method
Article
Overview
Research
Identity
Additional Document Info
View All
Overview
abstract
Visible-light-driven Bi2WO6/BiVO4 (BWO/BVO) heterostructures were obtained by joining BWO and BVO n-type semiconductors. A novel and green metathesis-assisted molten salt route was applied to synthesize BWO/BVO. This route is straightforward, high-yield, intermediate temperature, and was successful for obtaining BWO/BVO heterostructures with several ratios (1:1, 1:2, 2:1 w/w). Besides, the 1BWO/1BVO was decorated with Ag nanoparticles (Ag-NPs, 6 wt.%25) and graphene (G, 3 wt.%25), applying simple and environmentally responsible procedures. The heterostructures were characterized by XRD, Raman, UV-Vis DRS, TEM/HRTEM, PL, and Zeta potential techniques. Ag-NPs and G effectively boosted the photocatalytic activity of 1BWO/1BVO for degrading tetracycline (TC) and rhodamine B (RhB) pollutants. A lab-made 19-W blue LED photoreactor was designed, constructed, and operated to induce the photoactivity of BWO/BVO heterostructures. The low-rated power consumption of the photoreactor (0.01-0.04 kWh) vs. the percent degradation of TC or RhB (%25X-TC = 73, %25X-RhB = 100%25) is one of the outstanding features of this study. Besides, scavenger tests determined that holes and superoxides are the main oxidative species that produced TC and RhB oxidation. Ag/1BWO/1BVO exhibited high stability in reuse photocatalytic cycles.